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Abstract

The model of ideal solution of self-associates is applied to analyze possible shapes of the liquid surface for ternary eutectic

alloys. The interaction parameters of the constituents that can be expressed by means of melting temperatures have found to

have much in¯uence upon this shape. A discussion of that feature in comparison with possible differences in crystal structures

is presented. Estimations of the liquids surface for the Ag±Bi±Cu and Bi±Cd±Sn ternaries were carried out. Different reasons

found to be important for this three-fold surface have been considered. # 1998 Elsevier Science B.V.
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1. Introduction

Development of the associated solution model fol-

lows two main directions: a) to account for the inter-

actions between complexes (regular associated

solution [1±3] and (or) b) re®nement of stoichiometric

composition of the associates embedded in liquid

phase [4,5]. It is necessary to emphasize that the

introduction to the theory of such additional species,

which are not evident from the phase diagram, seems

to us as a quite arti®cial and ambiguous recourse. One

needs to look only for comparison the recommended

variety of the associates' stoichiometry in [4,5] that

were considered by these authors for common systems

[6]. We mention in passing that up to now the ability of

self-association in binary melts was the subject of

investigation only in a few works [7,8].

A detailed analysis of the consequences of taking

into account the distribution of associates upon sizes

and conformations within self-association has been

undertaken by us for simple metallic liquids [9] as well

as for the binary liquid alloys of eutectic type [10±12].

This approach is consistent in estimations of both

melting and mixing thermodynamics. Namely, at ®rst,

to obtain the melting entropy as the function of the

geometry of nearest neighborhood of the related solid.

At second, to express explicitly dependencies of the

thermodynamic mixing functions upon concentration

in terms of only the melting temperatures of the pure

components. At third, to carry out the evaluation of the

eutectic liquidus curves. For the single component

system the entropy of melting was found to be the

universal quantity, i.e. their value is the same for the

elements of matched crystal structures. The predic-

tions of such a theory for metals and inert elements are

in satisfactory agreement to the experimentally

observed data [13,14]. For the binary eutectic alloys
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this model allows us to describe properly the quali-

tative features of the thermodynamics during mixing,

if its deviation from the ideal mixture turned out to be

positive and similarly for the shapes of the liquidus

curves. In certain cases, especially for the liquidus

curves, the agreement was found to be quantitative.

It is obvious that the trial-and-error method within

appropriate stoichiometric compositions of the associ-

ates has more evidently displayed limitation in appli-

cation to ternary systems, because the total number of

the distinguished complexes in the constituent bound-

ary two-component alloys should be rather large.

Besides, it could be necessary also to consider mixed

ternary associates that might be formed due to che-

mical equilibria between binary species. If one goes on

another way of applying the regular associated solu-

tion theory, then the number of adjustable parameters

must rise unambiguously.

In contrast, our version of the associated model, that

still remains the ideal alternative, permits us to keep

the minimal number of such parameters. In particular,

the binary eutectic description requires two energies

of pair bonds, which as a virtue, can be easily deter-

mined by the melting temperatures of the pure com-

ponents. Furthermore, this kind of model can be

readily generalized for the case of multi-component

eutectic systems.

Therefore, aim of the presented paper is to illustrate

the convenient application of the associated solution

model taking the only self-association at the estima-

tion of the liquidus surface in simple ternary eutectic

alloys into account. The analysis of the ternary eutec-

tic point allocation in relation to the melting tempera-

tures' mismatch of the pure components as well as

their structures in the solid state seems to us as one of

the central problems. On this ground we present also a

number of the estimated examples of the liquidus

surface as well as the comparison for the Ag±Bi±Cu

alloys among them.

2. General theory

Let us consider the following multi-component

mixture A
�1�
c1 A

�2�
c2 � � �A�p�cp , where ck is the mole fraction

of k-component, their sum being equal to unity. Each

of the pure components is an associated liquid of ideal

type consisting of complexes of different sizes and

con®gurations A
�k�
n;Lk

n
, where n is the number of atoms

and Lk
n is the number of pair bonds of nearest neigh-

bors between these atoms. For multi-component sys-

tem, we suggest only the existence of these self-

associates. The existence of the following equilibria

is supposed: nA
�k�
1 � A

�k�
n , which have to be described

by the necessary reaction constants:

K
A
�k�
n
� exp

ÿ�kkL
�k�
n

kBT

 !
; (1)

where �kk stands for the corresponding energy of pair

bond of nearest neighbors A(k) A(k),kB is the Boltz-

mann constant and T is the absolute temperature. In

order to derive these expressions it is necessary to start

from the molar Gibbs free energy and to minimize it

upon the numbers of complexes [15,16]. This

approach gives rise to the set of equations of the Mass

Action Law in the form of Eq. (1). The entropy term of

the constants is absent because the rotational and

vibrational degrees of freedom of the complexes are

not considered in this approximation.

We account for the geometry of associates, which

are related to the crystal structure fragments of the

original solid (for the pure component). Hence the

number of these pairs must vary between the bound-

aries: nÿ 1 � L
�k�
n � m

�k�
n . Here the lower boundary

corresponds to the `chain con®guration', and all of the

others can be constructed by consecutive `scrolling',

i.e. by appending one bond, as long as the spatial form

of the complex reaches the most closed-packed con-

®guration (m
�k�
n ) in terms of the given lattice geometry.

It is meaningful, that limn!1 m
�k�
n

n
� Z�k�

2
, where Z(k) is

the coordination number of nearest neighbors in the

solid component. This relation gives the above-men-

tioned possibility to analyze the melting±crystalliza-

tion process. Thus, L
�k�
n is simply the running integer of

the summation. The values m
�k�
n for different classes of

crystal structures have been listed in [9] for complexes

consisting of up to 20 atoms.

If we accept the approximation of ideal associated

solution then, as it was shown [13], the following

expression for the chemical potential proves to be

rigorous:

�
�k�
A � kBT lnx

�k�
A1
; (2)

Where x
�k�
A1 is the mole fraction of the unbonded

(free) atoms of a given component. Furthermore,
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consideration of the rotations (as the solid body) and

the vibrations do not in¯uence such general results.

It is possible to include into the theory non-trivial

entropy terms for the reaction constants [13±15],

however this consideration is not of our current

interest.

The system is determined by (p) equations for

its determination, one of them is the normalisation-

to-unity condition and the others are (p-1) equations of

the material balance for (p-1) components.

1 �Pp
k�1

P
n x

A
�k�
n

c1 �
P

n
nx

A
�1�
nPp

k�1

P
n

nx
A
�k�
n. . .

cpÿ1 �
P

n
nx

A
�pÿ1�
nPp

k�1

P
n

nx
A
�k�
n

8>>>>>><>>>>>>:
(3)

The rules of summation are as follows:

X
n

nx
A
�k�
n
�
XM
n�1

nx
A
�k�
1

Xm�k�n

L
�k�
n �nÿ1

� exp ÿ�kkL�k�n =kBT
� �

: (4)

M is an upper boundary, that usually proves to be

20±25 for practical purposes under consideration.

Alternatively, it could be equal to in®nity if the

numbers m
�k�
n are approximated by some analytical

expression to make up the summation in an explicit

way. In order to obtain the condition of the solid±

liquid equilibrium one might turn to a requirement

of convergence of such series, for example, the

D'Alembert requirement:

lim
n!1

exp��kkL
�k�
n�1=kBT�xAn�1

1�k�

exp��kkL
�k�
n =kBT�xn

A
�k�
1

� x
A
�k�
1

lim
n!1 exp��kk=kBT�m�k�n�1 ÿ m�k�n ��

� xA1�k�exp��kkZ�k�=2kBT � < 1 (5)

The equilibrium between the complex of in®nite size

(the solid phase) and the associated liquid is reached at

the temperature imposing the equality sign in the last

expression. Numerical values of �kk can now be easily

expressed in terms of corresponding melting tempera-

tures [15,16]:

ÿ�kkZkk

2
� kBTm

Ak
lnx0

Ak
(6)

Where Tm
Ak

is the melting temperature of the pure

component Ak; x
0
Ak

is the mole fraction of the free

atoms in the liquid at this temperature. �kk and x0
Ak

must be found self-consistently by solving Eq. (6)

together with the equation describing the normaliza-

tion-to-unity condition for pure Ak. Hence, the bond

energies for the different pairs are non-adjustable

parameters and can be simply expressed through the

melting temperatures of the involved species. Thus,

the results of estimations presented below have been

obtained without ®tting of any parameters to the

liquidus curves under consideration.

3. Ternary eutectic alloys

Let us consider a ternary system AcA
BcB

D1ÿcAÿcB

containing only self-associates. Our thermodynamic

approach makes it possible to described both the

liquidus surface and the liquid-phase thermodynamics

at mixing. In doing so, we need only the melting

temperatures of pure metals and their structures in the

solid.

3.1. Liquidus surface estimation

Separate treatment of the solid±liquid equilibrium

conditions for each component allows to evaluate the

liquidus surface range adjacent to this component, if

the equation system of material balance Eq. (3) is

applied.

The equilibrium between the solid component A

and the liquid phase is given by: �L
A�TLA; cA; cB� � �S

A,

where TLA stands for the part of the liquidus surface

adjacent A. It can be easily seen that Eq. (5) results in

the following equation:

ÿ�AAZA

2
� RTLA lnx; (7)

where x � xA1
�TLA; cA; cB�. By substitution of Eq. (7)

into Eq. (3), we have a system of equations which

allows to estimate the values of x, y � yB1
�TLA; cA; cB�

and z � zD1
�TLA; cA; cB� as functions of temperature

and pairs of independent concentrations (cA and cB).

Hence, we obtain for this part of the liquidus

surface:
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Parallel description for x, y, and z can be obtained for

the parts adjacent to B and C components.

The interaction of each pair of these surfaces, which

have the origins at the melting points of the pure

components lies along a valley. For the evaluation of

this valley it is necessary to complete the system of

Eq. (8) by one more equilibrium condition for second

component similar to Eq. (7). The starting point of the

valley coincides with the eutectic point in related binary

and this line terminates at the ternary eutectic point.

The valley between constituents A and B is given by:

Here ���BBZB/�AAZA.

The calculation of the ternary eutectic point

requires a third equation of the type Eq. (7) for the

remaining component C. This leads us to a single

equation of the form:

1 �
XM
n�1

xn
Xm�A�n

Ln�nÿ1

xÿ2Ln=ZA �
XM
n�1

x�n
Xm�B�n

Ln�nÿ1

� xÿ2�BBLn=�AAZA �
XM
n�1

x�n
Xm�D�n

Ln�nÿ1

� xÿ2�DDLn=�AAZA ; (10)

where � � �DDZD=�AAZA.

3.2. Thermodynamics of mixing

The enthalpy of mixing is given with the above sum

of products Eq. (9) in mixture of a given concentration

with respect to the pure components.

�HM � H�cA; cB� ÿ cAHA ÿ cBHB

ÿ �1ÿ cA ÿ cB�HD

� ÿ�AASA
3 � �BBSB

3 � �DDSD
3

SA
2 � SB

2 � SD
2

� cA�AA

SA0
3

SA0
2

� cB�BB

SB0
3

SB0
2

� �1ÿ cA ÿ cB��DD

SD0
3

SD0
2

(11)

The superscript 0 is related to the pure components at

the same temperature. The sums Eq. (11) are as follows:

Sk
2 �

XM
n�1

n
Xmk

n

Lk
n�nÿ1

xLk
n
; Sk

3 �
XM
n�1

Xmk
n

Lk
n�nÿ1

Lk
nXLk

n

(12)

The enthalpy dependence on temperature is implicitly

included in terms of the reaction constants Eq. (1). For

the calculation of xLk
n

one needs the material balance

Eq. (3).

Activities of the associated components can be

found by means of chemical potentials starting from

Eq. (2): ak � xk1
=xk0

1
, with xk0

1
the mole fraction of the

free atoms in pure liquid at the temperature of interest.

The molar Gibbs free energy can be calculated by:

�GM � RT �cAlnaA � cBlnaB

� �1ÿ cA ÿ cB�lnaD� (13)

1 �PM
n�1 xn

Pm
�A�
n

Ln�nÿ1 xÿ2Ln=ZA �PM
n�1 yn

Pm
�B�
n

Ln�nÿ1 xÿ2�BBLn=�AAZA �PM
n�1 zn

Pm
�D�
n

Ln�nÿ1 xÿ2�DDLn=�AAZA

cA �
PM

n�1
nxn
Pm

�A�
n

Ln�nÿ1
xÿ2Ln=ZAPM

n�1
nxn
Pm

�A�
n

Ln�nÿ1
xÿ2Ln=ZA�

PM

n�1
nyn
Pm

�B�
n

Ln�nÿ1
xÿ2�BBLn=�AAZA�

PM

n�1
nzn
Pm

�D�
n

Ln�nÿ1
xÿ2�DDLn=�AAZA

cB �
PM

n�1
nyn
Pm

�B�
n

Ln�nÿ1
xÿ2�BBLn=�AAZAPM

n�1
nyn
Pm

�B�
n

Ln�nÿ1
xÿ2�BBLn=�AAZA�

PM

n�1
nxn
Pm

�A�
n

Ln�nÿ1
xÿ2Ln=ZA�

PM

n�1
nzn
Pm

�D�
n

Ln�nÿ1
xÿ2�DDLn=�AAZA

8>>>>>>>><>>>>>>>>:
(8)

1 �PM
n�1 xn

Pm
�A�
n

Ln�nÿ1 xÿ2Ln=ZA �PM
n�1 x�n

Pm
�B�
n

Ln�nÿ1 xÿ2�BBLn=�AAZA �PM
n�1 zn

Pm
�D�
n

Ln�nÿ1 xÿ2�DDLn=�AAZA

cA �
PM

n�1
nxn
Pm

�A�
n

Ln�nÿ1
xÿ2Ln=ZAPM

n�1
nxn
Pm

�A�
n

Ln�nÿ1
xÿ2Ln=ZA�

PM

n�1
x�n
Pm

�B�
n

Ln�nÿ1
xÿ2�BBLn=�AAZA�

PM

n�1
nzn
Pm

�D�
n

Ln�nÿ1
xÿ2�DDLn=�AAZA

8>><>>:
(9)
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Other thermodynamic quantities of mixing, for exam-

ple, the entropy can be found as usual.

4. Results and discussion

In order to solve the systems of Eqs. (4),(5) and (7)

for plotting the liquidus surface, the intersections

(valleys) and the ternary eutectic point, we have used

the iteration method of Newton±Raphson. To inves-

tigate the in¯uence of different effects upon the shape

of the liquidus surface, calculations were carried out

for various possible situations. First, for different

melting temperatures of the components, but for the

same local geometry, and, secondly, et vice versa, for

the same melting temperatures, but for different crys-

tal structures. For comparison with experimental data

the system of Ag±Cu±Bi was chosen, which has only

eutectic boundary binaries.

In Fig. 1(a) the con®guration of the liquidus surface

is depicted for the case of ternary alloys which have

TA�TB�1000 K, TD�800 K. The structure of the solid

components was faced centered cubic. Fig. 1(b) illus-

trates the ternary diagram for the case of

TA�TB�1000 K, TD�1500 K, the components A

and D have a local fcc structure as B constituent

has the diamond-type structure. These ®gures show

that the association model is qualitatively quite fea-

sible. The main feature of the phase diagrams is the

displacement of the ternary eutectic point to the side of

the species with a lower melting point. In Table 1, we

have presented the position of this point for different

combinations of three structure types: face centered

cubic (F.C.C.), diamond and b-Sn within the same

(1000 K) melting temperatures for each component.

Results of the liquidus surface estimation for the

Bi±Cd±Sn alloys are presented on Fig. 2(a). The

melting temperatures of these metals are in the same

range, therefore the ternary eutectic point is located

near the center of the composition triangle. The

experimental data (Fig. 2(b)) support this conclusion.

The theory represents satisfactorily the curvature of

the liquidus isotherms in contrast to the calculation of

[19] (Fig. 2(b)). The results of another work [20] agree

quite well with the experiment even at the quantitative

level. However, it is remarkable that the authors have

Fig. 1. Two examples of liquidus surface related to difference in melting temperatures: a) TA�TB�1000 and TD�800 K for one and the same

(F.C.C.) crystal structure; b) TA�TB�1000 and TD�1500 K A-F.C.C., B-diamond and D-F.C.C. structure.

Table 1

Location of the ternary eutectic point as function of various types

of local structure. The numbers 1, 2 and 3 correspond to F.C.C.,

diamond and û-Sn lattices, respectively; TA�TB�TD�1000 K.

1-1-1 1-1-2 1-1-3 1-2-3

Te/K 668 659 657 648

ce
A 0.333 0.305 0.316 0.370

ce
B 0.333 0.305 0.316 0.290
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used a lot of experimental information on thermo-

dynamic properties of the corresponding binaries.

Fig. 3(a) and 3b show calculated results for the

system Ag±Cu±Bi together with the experimental

data. In previous work, we have reached a satisfactory

agreement with the experimental liquidus for the

corresponding binaries Ag±Cu and Cu±Bi [11]

(Fig. 4(b) and 4c). The largest discrepancies from

the experiment were found for the Ag±Bi binary

(Fig. 4(a)). These deviations are displayed also in

the shape of the ternary liquidus surface. The iso-

therms of the calculated diagram (Fig. 3(a)) are mono-

tonic, whereas the experimental data differs

noticeably, especially in the Bi-rich region.

Fig. 2. Present estimation of liquidus temperatures for Bi±Cd±Sn ternary alloys (a) in Comparison with (b) experimental [18] and calculated

data [19]. Solid curves correspond to the calculations taken from [19] and the dashed ones related to the experimental data.

Fig. 3. Calculated (a) and experimental [17] (b) values of liquidus temperatures for Ag±Bi±Cu alloys.
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Bearing in mind the non-empirical character of

presented estimations we consider this agreement as

satisfactory: At ®rst, the model describes qualitatively

the observed trends for the eutectic liquidus surfaces.

At second, there are perspectives of theory improve-

ments, for example, to take into account the rotational

and vibration degrees of freedom of the embedded

complexes, the Flory type mixing entropy (volume

dependence of the reaction constants), electronic sub-

system etc.

5. Conclusion

The model of associated solutions enables us to

give an analysis of some peculiarities of the

liquidus surface description in ternary eutectic

alloys. The ®rst feature is associated with the inter-

action parameter mismatch between the pure

components. The shape of the liquidus surface in

ternary diagrams is very sensitive to this diff-

erence. On the contrary, unlike crystal structures

of constituent metals in¯uence upon the shape much

less.

Non-monotonic shapes of experimental curves are

probably lying out of the ideal association description.

In our opinion, the reason might be the size mismatch

of metallic atoms that has not been yet taken into

account. Perhaps this size difference combined with

local geometry could be responsible for these anoma-

lies. At ®rst glance, the Flory approximation would be

able to improve the predictions. There is one more

result. It is well known [13] that for binary eutectic

systems with low-melting-entropy species the semi-

empirical rule of Van Laar works quite well. So the

tangent of the liquidus curve at small concentrations

corresponds to the concave shape of the latter. This

behaviour seems to hold for ternary systems as well.

The calculated results are in agreement with this rule,

because our earlier estimations of the melting entropy

(more rigorously, its con®gurational part) and binary

liquidus have supported this point of view. Finally, for

understanding experimental trends of the liquidus

surface and for a rough estimation of why some

eutectic alloys have an anomalous behaviour, the

present analysis is a fortunate compromise between

the simplicity of computational attempts and the

possibility to explore multi-component eutectic

systems.
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Fig. 4. Liquidus curves for the binary systems Ag±Bi (a), Ag±Cu (b) and Bi±Cu (c) (x calculated from theory, solid line corresponds to the

experimental data [21]).
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